Multiscale Stochastic Preconditioners in Non-intrusive Spectral Projection

نویسندگان

  • Alen Alexanderian
  • Olivier P. Le Maître
  • Habib N. Najm
  • Mohamed Iskandarani
  • Omar M. Knio
چکیده

A preconditioning approach is developed that enables efficient polynomial chaos (PC) representations of uncertain dynamical systems. The approach is based on the definition of an appropriate multiscale stretching of the individual components of the dynamical system which, in particular, enables robust recovery of the unscaled transient dynamics. Efficient PC representations of the stochastic dynamics are then obtained through non-intrusive spectral projections of the stretched measures. Implementation of the present approach is illustrated through application to a chemical system with large uncertainties in the reaction rate constants. Computational experiments show that, despite the large stochastic variability of the stochastic solution, the resulting dynamics can be efficiently represented using sparse low-order PC expansions of the stochastic multiscale preconditioner and of stretched variables. The present experiences are finally used to motivate several strategies that promise to yield further advantages in spectral representations of stochastic dynamics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Domain decomposition preconditioners for multiscale problems

In this paper, we study domain decomposition preconditioners for multiscale elliptic problems in high contrast media. We construct preconditioners such that the condition number of the preconditioned system is independent of media contrast. For this purpose, multiscale spaces for the interpolation on the coarse grid is developed using a local weighted spectral problem. A main observation is tha...

متن کامل

Recent developments in spectral stochastic methods for the numerical solution of stochastic partial differential equations

Uncertainty quanti cation appears today as a crucial point in numerous branches of science and engineering. In the last two decades, a growing interest has been devoted to a new family of methods, called spectral stochastic methods, for the propagation of uncertainties through physical models governed by stochastic partial di erential equations. These approaches rely on a fruitful marriage of p...

متن کامل

انجام یک مرحله پیش پردازش قبل از مرحله استخراج ویژگی در طبقه بندی داده های تصاویر ابر طیفی

Hyperspectral data potentially contain more information than multispectral data because of their higher spectral resolution. However, the stochastic data analysis approaches that have been successfully applied to multispectral data are not as effective for hyperspectral data as well. Various investigations indicate that the key problem that causes poor performance in the stochastic approaches t...

متن کامل

Uncertainty quantification in reacting-flow simulations through non-intrusive spectral projection

A spectral formalism has been developed for the “non-intrusive” analysis of parametric uncertainty in reacting-flow systems. In comparison to conventional Monte Carlo analysis, this method quantifies the extent, dependence, and propagation of uncertainty through the model system and allows the correlation of uncertainties in specific parameters to the resulting uncertainty in detailed flame str...

متن کامل

An efficient hybrid method for uncer- tainty quantification

A technique for coupling an intrusive and non-intrusive uncertainty quantification method is proposed. The intrusive approach uses a combination of polynomial chaos and stochastic Galerkin projection. The non-intrusive method uses numerical integration by combining quadrature rules and the probability density functions of the prescribed uncertainties. A strongly stable coupling procedure betwee...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Sci. Comput.

دوره 50  شماره 

صفحات  -

تاریخ انتشار 2012